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Abstract: To investigate the reasonable range of the inclination angle of arch ribs, a spatial finite
element method was employed based on a concrete-filled steel tube (CFST) basket-handle through
an arch bridge with a span of 360 m. A spatial finite element model was established using Midas/Civil
software, which was verified with actual bridge data. The effects of different arch rib inclination
angles were investigated under static loads. The structural natural frequencies, linear elastic stability
coefficients, internal forces, and displacements were comprehensively considered to determine the
reasonable range of the inclination angle. The results show that when the inclination angle ranges
between 8◦ and 10◦, the first, third, and sixth natural frequencies of the structure are increased.
It effectively improves the lateral and torsional stiffness of the arch ribs while ensuring optimal
out-of-plane stability of the arch ribs. Compared with the parallel arch, the stability is improved by
20.2%. The effects of angle variation on displacement and internal force of the arch ribs were not
significant. Considering all indicators, the optimal range of the inclination angle for the arch ribs of
300-m-level highway CFST arch bridges is suggested to be 8~10◦.

Keywords: steel tube concrete truss arch; highway basket-handle arch bridge; arch rib inclination
angle; finite element method; lateral stability

1. Introduction

In mountainous regions of China, arch bridges are widely used due to their advantages
of high stiffness, high bearing capacity, good seismic performance, and low cost [1,2]. The
number of existing concrete-filled steel tube (CFST) arch bridges in China has exceeded
400, and their spans continue to break records. However, there are few CFST basket-handle
arch bridges with spans above 300 m [3–5]. Therefore, the research on the large-span
basket-handle arch bridge is relatively limited, especially on the mechanical performance
affected by inclination angle [1,6].

As the span of steel-concrete composite arch bridges increases, the problem of lat-
eral stability becomes more prominent. The basket-handle arch not only has an elegant
appearance but also has good lateral stability. Table 1 shows the statistics of some high-
way CFST basket-handle arch bridges. The inclination angle of the arch ribs is between
4.6◦ and 13◦. Existing literature [7–9] has shown that if an improper inclination angle of
the basket-handle arch ribs is used, the lateral stiffness decreases. In addition, for truss
structures, changes in structural form may lead to a redistribution of member axial forces,
thereby affecting the safety of the structure. Scholars have proposed methods to estimate
the axial forces on the members of the structure. Therefore, when determining the optimal
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inclination angle of the arch ribs, the effects on the mechanical performance, such as axial
forces and bending moments of the structure, need to be considered [10,11]. Many scholars
have studied the effects of inclination angle on the structural mechanical performance of
CFST arch bridges. Yang et al. [12] studied a 220-m railway CFST arch bridge with varying
inclination angles. It was found that when the inclination angle ranges from 0◦ to 10◦,
the modal frequencies of lateral and torsional vibrations of the arch ribs increase with
inclination. However, the vertical and longitudinal vibration frequencies remain almost
constant. Yun et al. [13] used the finite element analysis method to study the influence
of the arch ribs rise-to-span ratio and inclination angle on the structural vibration mode
and stability. A mid-supporting steel-concrete composite arch bridge was employed in
this study. It was found that the inclination angle of the arch ribs should not exceed
10◦. Wang et al. [14] conducted a self-vibration characteristic analysis of a 240-m railway
CFST arch bridge. In this study, the lateral vibration frequency was found to be more
sensitive than the other two directions when the inclination angle varied from 7.5◦ to 9.5◦.
Wei et al. [15] conducted a parameter analysis of several existing CFST arch bridges and
built a CFST arch bridge with a span of 105 m. The study showed that the linear elastic
stability safety factor gradually increased as the inclination angle of the arch ribs increased
within 0–15◦ and reached an optimal state at 9◦. Zeng et al. [16] studied the structural
stability of a steel box arch rib bridge with varying arch rib inclination angles from 0◦ to 12◦

using the finite element analysis method. The results showed that the out-of-plane stability
safety factor increased first and then decreased with the increase in inclination angle. The
out-of-plane stability safety factor reached its peak at 10◦. However, the in-plane stability
safety factor decreased with the increase in the inclination angle. Therefore, it is necessary
to comprehensively analyze and determine the optimal inclination angle. Zhao et al. [17]
studied the variation of internal forces at key positions of the arch ribs when the inclination
angles were 0◦, 7◦, and 15◦. A flying-swallow-shaped CFST cable-stayed arch bridge with
a main span of 360 m was employed in this study. The results showed that the internal
forces of the arch ribs increased with the increase in the inclination angle, especially the
bending moment at the crown. Huang et al. [18] examined the variation of internal forces
and vertical displacement of a 260-m CFST arch bridge when the inclination angle of the
arch rib ranged from 0◦ to 12◦. The results showed that with an increase in the inclination
angle of the arch rib, the bending moment and horizontal thrust force at the abutments
decreased significantly, reaching a minimum of 8◦. The increase in inclination angle beyond
8◦ did not result in a significant change in the internal forces or vertical displacement.
Xu et al. [19] used a railway CFST arch bridge as an example to investigate the influence of
the arch rib inclination angle on the seismic performance of the structure. The study found
that an inclination angle of 3.5~4◦ not only reduced the displacement and axial force of the
arch rib but also avoided the problem of excessive growth of tensile stress in the concrete
of the arch rib, which could result in inadequate strength. Wang et al. [20] determined the
optimal inclination angle of the arch rib by considering the effects of the rise-to-span ratio,
width-to-span ratio, and number of transverse braces. A centrally supported dumbbell-
shaped steel-concrete composite basket-handle arch bridge was employed in this study.
The study found that the optimal inclination angle of the arch rib was negatively correlated
with the rise-to-span ratio and not significantly correlated with the number of transverse
braces. Ji et al. [21] investigated the variation patterns of the linear elastic and ultimate
bearing capacities of a large-span railway steel-concrete composite lever arch bridge with
a tube-shaped structure. The study found that the structural stability of the arch bridge
would increase first and then decrease as the arch rib inclination angle increased. The
optimal value of the inclination angle was determined in this paper as well. Pan et al. [22]
conducted a study on the influence of the inclination angle on the lateral stability of a tied
arch bridge using the finite element method. Through parameter analysis, the study ob-
tained an approximate expression for the reasonable inclination angle of the double-rib
arch. The studies of the aforementioned scholars have achieved rich results. However, the
majority of studies were focused on railway bridges. Related studies on highway bridges
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are relatively few, especially for bridges with spans larger than 300 m. Furthermore, the
evaluation is not comprehensive enough. The relationship between multiple factors of the
structure and the arch rib inclination angle needs to be systematically studied. Further
research is required to comprehensively determine the reasonable range of inclination
angles for the arch rib.

Table 1. Partial basket-handle arch bridges were built in China.

Serial Number Bridge Name Span/m Arch Rib Section Form Inclination Angle

1 The Yarlung Zangbo River 430 Four limb truss 4.6◦

2 Yellow River Extra Large Bridge 380 Four limb truss 8◦

3 Guangxi Shawei Zuojiang Bridge 360 Four limb truss 10◦

4 Lancang River Grand Bridge 342 Four limb truss 6.8

5 Anhui Taiping Lake Bridge 336 Four limb truss 10◦

6 Zhejiang Sanmenkou Cross Sea Bridge 270 Dumbbell shaped 8◦

7 Zhejiang Tongwamen Bridge 238 Dumbbell shaped 8.5◦

8 Jinghang Canal Grand Bridge 235 Four limb truss 10◦

9 Menghua Railway Longmen Yellow River Bridge 202 Four limb truss 6◦

10 Huayudong Bridge 180 Four limb truss 10◦

11 Jiangning Grand Bridge 128 Dumbbell shaped 9◦

12 Hujiawan Grand Bridge 112 Dumbbell shaped 9◦

13 Dongtiaoxi Grand Bridge 112 Dumbbell shaped 13◦

14 Longmen Yellow River Bridge 202 Four limb truss 6◦

The objective of this paper is to study the influence of the arch rib inclination angle on
the large span highway CFST basket-handle arch bridge (i.e., 300 m level). The mechan-
ical performance of the structure under different rib inclination angles was investigated.
A reasonable range of arch rib inclination angles for large-span CFST arch bridges was
proposed to enhance their safety and provide a reference for the design of similar bridges
in the future. Based on the world’s largest CFST basket-handle arch bridge with a span
of 360 m—the Shaowei Zuojiang Extra-large Bridge—this paper employs Midas Civil to
establish a full-bridge finite element model. Firstly, the accuracy of the finite element was
verified by using the measured vertical displacement values of the main arch during the
installation of the main beam and bridge pavement. Then, different arch rib inclination
angles were simulated in the FE model. The structural vibration characteristics, linear elas-
tic stability, internal forces, and displacement under static loads with different inclination
angles were analyzed. The relationship between the arch rib inclination angles and the
structural mechanical performance was systematically studied.

2. Bridge Background and Finite Element Model

The Shawei Zuojiang Bridge is a through-arch bridge with varying cross-section CFST
truss ribs. It is designed as a basket-handle arch bridge. It has a main span of 360 m
(an effective span of 340 m) and a rise-to-span ratio of 1/4.533. The arch axis follows
a catenary curve, and the arch axis coefficient is m = 1.55. The two arch ribs are inclined
10 degrees towards the centerline of the bridge, as shown in Figure 1a. The transverse
spacing between the arch feet is 38 m. Each arch rib is constructed from a four-tube truss
with a varying cross-section. The cross section has a height of 7 m at the arch crown
section and 12 m at the arch foot section, and a rib width of 3.2 m. Both upper and lower
chord members of the arch rib are made of steel pipes with a diameter of 1200 mm and
a wall thickness of 24–32 mm, filled with C60 self-compacting concrete to compensate for
shrinkage. The rectangular cross-section is formed by connecting the chord members of the
main arch rib with 720 mm-diameter connecting pipes and two vertical web members with
a diameter of 610 mm. The chord members of the main arch rib are all made of Q345 steel.
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Figure 1. Arch rib structure diagram. (a) Schematic diagram of arch rib inclination angle; (b) arch 
rib arch crown section; and (c) arch rib and arch foot section. 

The two arch ribs are connected by “X”-braces. There are 12 “X”-braces arranged 
along the upper chord and 10 along the lower chord, with the steel pipes of the “X”-braces 
measuring Φ900 × 18 mm. The cross-sectional diagrams of the main arch rib at the crown 
and foot are shown in Figure 1b,c, respectively, and the overall layout is shown in Figure 
2. The cross-section of the bridge deck is shown in Figure 3. The bridge deck has a concrete 
slab and steel grid beams supporting it. The steel grid beam consists of 7 longitudinal 
beams and 24 transverse beams. The transverse beam is made of 20-mm-thick steel plates 
and is located under each suspender. The longitudinal beams are I-beams made of Q345 
steel. The thickness and the width of the top and bottom flanges of the longitudinal beams 
are 20 mm and 600 mm, respectively. The thickness of the web plate is 16 mm. The No. 2 
and No. 6 beams in Figure 3 have a height of 1924 mm. The No. 1 and No. 7 beams have 
a height of 1113 mm. The No. 3 and No. 5 beams have a height of 1274 mm. The No. 4 
beam has a height of 1400 mm. A C40 concrete slab with a thickness of 140 mm is located 
at the top of the grid beams. The steel grid beams and concrete slab are connected by a 
steel plate with a thickness of 100 mm and shear nails. The entire bridge has 24 pairs of 
suspenders, which are composed of steel strands with a tensile strength of 1860 MPa. This 
type of through-arch bridge has a clear load path. The dead load and live load are trans-
mitted to the arch ribs through the suspenders and then to the abutment at the arch foot. 

 
Figure 2. Elevation of Shawei Zuojiang Bridge. 

Figure 1. Arch rib structure diagram. (a) Schematic diagram of arch rib inclination angle; (b) arch rib
arch crown section; and (c) arch rib and arch foot section.

The two arch ribs are connected by “X”-braces. There are 12 “X”-braces arranged
along the upper chord and 10 along the lower chord, with the steel pipes of the “X”-braces
measuring Φ900 × 18 mm. The cross-sectional diagrams of the main arch rib at the crown
and foot are shown in Figures 1b and 1c, respectively, and the overall layout is shown
in Figure 2. The cross-section of the bridge deck is shown in Figure 3. The bridge deck
has a concrete slab and steel grid beams supporting it. The steel grid beam consists of
7 longitudinal beams and 24 transverse beams. The transverse beam is made of 20-mm-
thick steel plates and is located under each suspender. The longitudinal beams are I-beams
made of Q345 steel. The thickness and the width of the top and bottom flanges of the
longitudinal beams are 20 mm and 600 mm, respectively. The thickness of the web plate
is 16 mm. The No. 2 and No. 6 beams in Figure 3 have a height of 1924 mm. The No. 1
and No. 7 beams have a height of 1113 mm. The No. 3 and No. 5 beams have a height of
1274 mm. The No. 4 beam has a height of 1400 mm. A C40 concrete slab with a thickness of
140 mm is located at the top of the grid beams. The steel grid beams and concrete slab are
connected by a steel plate with a thickness of 100 mm and shear nails. The entire bridge
has 24 pairs of suspenders, which are composed of steel strands with a tensile strength of
1860 MPa. This type of through-arch bridge has a clear load path. The dead load and live
load are transmitted to the arch ribs through the suspenders and then to the abutment at
the arch foot.
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MIDAS/CIVIL is software for structural and spatial finite element model building. It
was wildly used in bridge construction, temperature, dynamics, and mechanical perfor-
mance analysis [23,24].

In this study, the finite element software MIDAS/CIVIL was used to implement the
spatial finite element modeling of the bridge. The appropriate spatial elements were
selected based on the actual stress conditions of each component. The corresponding
constraints were applied according to the boundary conditions. The following assumptions
were made in the modeling process: (1) all section deformations comply with the cross-
sectional assumption; (2) no slippage occurs between steel tubes and concrete; and (3) linear
elastic theory is adopted and nonlinear effects are not considered.

The arch ribs and the steel grid beams were modeled using beam elements, the
bridge slab was modeled using plate elements, and the suspenders were modeled using
truss elements. The entire bridge has a total of 3930 nodes and 5714 elements, including
4942 beam elements, 724 plate elements, and 48 truss elements. The abutments were
fixed. The suspenders and arch ribs were rigidly connected using elastic connections.
The supports at two ends of the main girder were modeled as simply supported. The
second-stage load, such as the pavement and parapet, was simulated using uniformly
distributed loads applied to the main girder. The types and quantities of elements used in
the model are shown in Table 2. The finite element model is shown in Figure 4.

Table 2. Element type and quantity.

Element Type Quantity

Arch Rib Beam 3080
Steel lattice beam Beam 1862

Bridge deck Plate Element 724
Suspender Truss Element 48

To verify the accuracy of the finite element model, the measured vertical displacement
of the arch ribs during construction was compared with the finite element values. Reflectors
are arranged at the center of the top chord of the arch rib at the key sections (i.e., L/8,
2L/8, 3L/8, 4L/8, 5L/8, 6L/8, and 7L/8). A Leica total station was used to measure the
vertical displacement of the arch rib before and after the installation of the bridge deck. The
resolution of the total station is 0.1 mm. To avoid the impact of solar radiation on structural
deformation, measurements were made in the early morning with similar atmospheric
temperatures. Meanwhile, the displacements of ribs induced by bridge deck installa-
tion were calculated by the FE model. Two strategies were used during the calculation
(i.e., the geometric nonlinearity strategy and the linear elastic strategy). Figure 5a is the on-
site construction drawing, and Figure 5b is a comparison between the measured values and
calculated values of the vertical displacement at key sections of the arch rib. The deviation
is shown in Table 3 as well. In both strategies, the calculated vertical displacement of the
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key section of the arch rib matches the measured value. The geometric nonlinearity strategy
has slightly better performance than the linear elastic strategy, but it is not significant.
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Figure 5. (a) Construction drawing of bridge deck installation Site. (b) Comparison of vertical
displacement of key sections of arch rib.

Table 3. The deviation between calculated values and measured values of vertical displacement at
key sections of arch ribs (mm).

L/8 2L/8 3L/8 4L/8 5L/8 6L/8 7L/8

(3)—(1) −0.1 −2.6 −7.6 −6.6 −6.3 −1.7 −0.2
(3)—(2) 0.0 −2.1 −4.3 −1.6 −3.1 −1.3 −0.1

In the table, (1) is the linear elastic finite element value, (2) is the geometrically
nonlinear finite element value, and (3) is the measured value.

3. Analysis of Reasonable Value of Arch Rib Inclination Angle

For the basket-handle through the arch bridge, the inclination angle of the arch rib
cannot infinitely increase due to the geometrical limit. The width and height of the bridge
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deck, the arch rise, and other factors are shown in Figure 6. The relationship between the
inclination angle of the arch rib and these parameters can be expressed as follows:

tan θ =
B1 − B2

2( f − h)
(1)
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The arch rib inclination angle is:

θ = arctan(
B1 − B2

2( f − h)
) (2)

where θ—Arch rib inclination angle;
B1—The bridge deck width between the arch ribs;
B2—The clear distance between arch ribs at the crown;
f —Rise of the arch;
h—The height from the bridge deck to the center of the arch foot.
When the inclination angle is too large, the arch ribs at the top of the arch will intersect,

thereby limiting the increase in the inclination angle. On the other hand, a too-small
inclination angle will not be able to take advantage of the benefits of the basket-handle
arch. A typical basket-handle arch adjusts the inclination angle of the arch ribs by keeping
the bridge deck width constant. For the Shawei Zuojiang Bridge, B1 = 28 m, f = 75 m,
h = 16.2 m. When the inclination angle is zero, θ = 0◦, it is a parallel arch. The inclination
angle reaches its maximum value when B2 = 0, which can be calculated by the formula.

θ = arctan(
28 − 0

2(75 − 16.2)
) = 13.393◦

Therefore, the range of inclination angles for arch ribs is 0~13◦. To analyze the
mechanical performance with different rib inclination angles, 0◦, 1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦,
9◦, 10◦, 11◦, 12◦, and 13◦ were employed in this study. The natural vibration characteristics,
linear elastic stability coefficient, internal force, and displacement of arch ribs under static
load were calculated for structures at each selected angle. The optimal range of inclination
angle for arch ribs was then determined by considering all the mechanical performances
above comprehensively.

3.1. Analysis of the Influence of Natural Vibration Characteristics

To evaluate the natural frequencies and modes of vibration of the bridge under dif-
ferent arch rib inclinations, the structural self-weight and second stage loads (i.e., the
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weight of the bridge pavement and the parapet) were considered as the loads. As a result,
low-frequency modes contain the majority of the energy, while high-order modes have a
negligible impact on the structure’s vibration. For the parallel arch (with an inclination
angle of 0◦), the first six mode shapes and their natural frequencies are shown in Table 4.
The first three mode shapes are shown in Figures 7–9.

Table 4. Natural frequency and mode direction of the first six modes.

Modal Natural Frequency (HZ) Vibration Mode Direction

1 0.32 Symmetrical transverse bending
of the main arch

2 0.53 Antisymmetric vertical bending
of the main beam and arch rib

3 0.55 Antisymmetric transverse bending
of the main arch

4 0.64 Symmetrical transverse bending
of the main beam and arch rib

5 0.73 Symmetrical vertical bending
of the main beam and arch rib

6 0.86 Symmetrical torsion
of the main beam and arch rib
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According to the analysis in Table 4 and Figures 7–9, the first six modal frequencies
of the bridge have a maximum value of 0.8586, indicating that it is a flexible structure.
The first two modes were dominated by lateral bending and vertical bending. Torsion



Buildings 2023, 13, 1415 9 of 15

mode was ranked as the sixth mode. It indicated that the structure has a relatively weak
lateral stiffness, moderate vertical stiffness, and a relatively strong torsional stiffness. To
investigate the modal frequency variation with respect to different inclination angles, the
modal frequencies under different inclination angles were compared with those of the
parallel arch. The percentage difference of each modal frequency with respect to the parallel
arch model is shown in Figure 10.
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According to Figure 10, the changing rate varied with different modes while increasing
the inclination angle. For the first, third, and sixth modes, the curve shows a pattern
of increasing first and then decreasing. The natural frequency of the first, third, and
sixth modes reached a maximum value at 8◦ to 10◦, indicating the optimal inclination
angle for transverse and torsional stiffness improvement. For the second mode, the natural
frequency gradually decreases with an increase in the inclination angle. However, the
decrease was small—less than 2% at the inclination angle of 8◦ to 10◦. It indicated that the
increase in the inclination angle of the arch rib reduced the vertical stiffness of the arch rib,
but the effect was small.

3.2. Linear Elastic Stability Analysis

The linear elastic stability coefficient (λ) is an important indicator for evaluating
the stability and safety of structures. The definition of λ can be found in Cao et al. [9],
Xu et al. [19], and Wang et al. [25]. Due to the complexity of the structure, it is difficult
to obtain its elastic instability limit load using analytical methods. However, using finite-
element numerical analysis methods can yield reliable results [25]. Midas Civil employed
the subspace iteration method to calculate λ and the buckling shape of each buckling mode
by inputting the load conditions, number of buckling modes, and convergence conditions of
structural buckling. The change in inclination angle leads to a change in buckling capacity.
Under certain loads, the linear elastic stability coefficient λ increases with the increase
in buckling capacity. Therefore, λ can be used as an indicator of structural stability. The
dead load was employed as the load condition herein because it is the dominant load on
the linear stability of the structure. In practice, only the first buckling mode is important
because it has the smallest linear elastic stability coefficient. The shape and λ of the first
buckling mode were calculated for both in-plane and out-of-plane buckling. The λ buckling
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shape of the parallel arch ribs is shown in Table 5. The corresponding buckling shape
diagrams are shown in Figures 11 and 12.

Table 5. First-order stability coefficient and instability mode of a parallel arch.

Working Condition Modal Linear Elastic Stability
Coefficient λ Buckling Shape

Dead Load
Out-of-plane 1st bucking mode 7.447 Antisymmetric transverse

bending of the main arch

In plane 1st bucking mode 15.69 Antisymmetric vertical bending of
the main arch
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According to Table 5 and Figures 11 and 12, the first buckling modes of the parallel
arch are the anti-symmetric transverse bending and the anti-symmetric vertical bending
for out-of-plane buckling and in-plane buckling, respectively. The linear elastic stability
coefficient of the out-of-plane buckling is smaller than that of the in-plane buckling for the
parallel arch. It indicated that the lateral stiffness of the arch rib is weaker than the vertical
stiffness of the parallel arch. The percentage difference of λ with respect to the parallel arch
under different arch rib inclination angles is shown in Figure 13.

According to Figure 13, when the inclination angle of the arch rib ranges from 0◦ to 13◦,
the λ for the out-of-plane and in-plane directions showed different changing patterns with
the increase of the inclination angle. The λ of out-of-plane increased at the beginning and
then decreased with the increase in inclination angle. It reached its peak at an inclination
angle of 9◦ with a 20.2% improvement and then sharply decreased after the inclination angle
exceeded 10◦. The λ of in-plane mode showed a negative correlation with the inclination
angle. The decrease was small (3%) when the inclination angle was less than 10◦. However,
the λ of in-plane mode decreases significantly when the inclination angle exceeds 10◦. The
results indicated that the optimal inclination angle of the arch rib is between 8◦ and 10◦. It
effectively improves the out-of-plane stability of the structure with an insignificant decrease
in in-plane stability. Therefore, it is recommended to use an appropriate inclination angle
of 8◦ to 10◦ for the arch rib while ensuring the optimal first-order stability safety factors for
both the out-of-plane and in-plane directions.
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In order to consider the impact of geometric nonlinearity on the stability of the struc-
ture, the λ of the parallel arch was calculated using a geometric nonlinear model. The
results are shown in Table 6.

Table 6. Stability comparison.

λ of Out-of-Plane Mode λ of In-Plane Mode

Linear elastic model 7.447 15.69
Geometric nonlinear model 7.335 14.77
Difference percentage (%) −1.50 −5.86

From Table 6, it can be observed that, considering the geometric nonlinearity of the
structure, the λ is smaller with respect to that of the linear elastic model. However, the
difference is not significant, with 1.5% for out-of-plane mode and 5.86% for in-plane mode.
Therefore, the geometric nonlinearity of the structure is no longer considered.

3.3. Static Performance Analysis

Deformation and internal forces are macroscopic manifestations of the stress state of
bridges [26,27], and the internal forces of an arch bridge are mainly affected by the dead
load. As the span increases, the proportion of internal forces generated by the dead load
becomes larger. Therefore, the analysis of the effect of dead loads on the internal forces of
arch bridges is essential [28,29]. The dead load-induced internal forces and displacements
of the arch rib were calculated under different inclination angles. As a result, the arch rib
is a symmetrical structure, and the arch foot, L/8, 2L/8, 3L/8, and 4L/8 (arch top) were
selected as the key sections for displacement analysis. The key sections for internal force
selection were the arch foot, L/4, and 4L/8 (arch top). For a parallel arch, the vertical
displacements of the arch rib at the arch foot (L/8, 2L/8, 3L/8, and 4L/8) are 0, −16.5 mm,
−83 mm, −162.8 mm, and −208.8 mm, respectively. Figure 14 shows the difference in
displacement for different arch rib inclination angles with respect to a parallel arch.
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According to Figure 14, with the increase in the inclination angle, the vertical displace-
ments of the L/8 and 2L/8 sections show a continuous increase. When the inclination
angle is less than 10◦, the vertical displacement changes slowly, but it increases rapidly in
later stages. Vertical displacement at L/8 shows the largest percentage increase of 10% at
the inclination angle of 13◦. However, the vertical displacement value of the L/8 section
is relatively small. The 3L/8 and 4L/8 sections show a trend of first decreasing and then
increasing. The vertical displacement percentage difference reached its smallest for both
3L/8 and 4L/8 sections when the inclination angle was 8◦. It indicated that when the
inclination angle of the arch rib is 8◦, the vertical displacement of the 3L/8 section and the
4L/8 section of the arch rib is the smallest, and the percentage difference is less than 5%. As
far as the vertical displacement of the arch rib is concerned, the influence of the inclination
angle on the vertical displacement of the structure is not significant.

For the parallel arch, the internal forces of the key sections of the arch ribs are shown
in Table 7. The axial force unit in the table is kN and the moment unit is kN·m. The
internal force differences of different inclinations with respect to a parallel arch are shown
in Figure 15.

Table 7. Internal force values of key sections of parallel arches.

Internal Force Position Arch Foot Section 2L/8 Section 4L/8 Section

Axial Force (kN)
Upper chord −13,995.48 −18,325.64 −22,800.5
Lower chord −22,804.11 −21,297.89 −13,871.3

Bending Moment (kN·m) Upper chord 124.67 −164.95 487.35
Lower chord −984.09 −87.74 670.42

From Table 7 and Figure 15, the axial force of each key section of the arch rib shows
a different trend with the increase of the inclination angle. The axial forces at the upper
chord arch top section and the lower chord 2L/8 section decrease with the inclination angle
when the inclination angle is less than 10◦ and then increase. The axial force of the other
key sections of the arch rib shows an increasing trend, but the percentage difference is less
than 5%, and the change in axial force is relatively small. The bending moment of different
sections also shows different trends. The bending moment of the upper chord arch foot
section increases with the arch rib inclination angle at first and then decreases. It reached
a peak when the inclination angle was 10◦ with a 30% larger parallel arch. The effects of
inclination angle on bending moments at other key sections are not significant.
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4. Conclusions

Based on the world’s largest CFST basket-handle arch bridge, this paper conducted
a study on the effect of changes in arch rib inclination angle on the mechanical performance
of large CFST basket-handle arch bridges. Different arch rib inclination angles were ana-
lyzed in terms of structural natural frequency, linear elastic stability, internal forces, and
displacement under static load. The relationship between mechanical performance and
arch rib inclination angle was systematically studied, and the following main conclusions
were obtained:

(1) According to the analysis of the vibration characteristics, it is recommended that
the reasonable range of the rib inclination angle be 8◦ to 10◦, with the optimal angle being
9◦. At this angle, not only does the second-order natural frequency of the structure change
slightly, but the first, third, and sixth-order natural frequencies are also increased, which
can effectively improve the rib’s lateral and torsional stiffness.

(2) Based on the analysis of the structural elastic stability coefficient, it is suggested
that the reasonable range of the arch rib inclination angle is 8~10◦, and the optimal angle
is 9◦. This not only ensures the best out-of-plane stability of the arch rib, with a stability
improvement of 20.2% compared to a parallel arch but also ensures that the decrease in
in-plane stability is within 3%.

(3) Based on the analysis of static performance, the variation of rib inclination angle
has little effect on rib displacement and internal force. When the rib inclination angle
varies within the range of 0◦ to 13◦, the difference ratio of rib displacement is within
5%. The bending moment difference ratio of the upper chord foot section reaches 30% at
an inclination angle of 10◦, but the bending moment value is relatively small. Considering
the relationship between rib displacement and internal force with rib inclination angle, it is
suggested that the rib inclination angle be between 9◦ and 10◦.

(4) Based on the above analysis of the structural mechanics performance under differ-
ent rib inclination angles, it is recommended that the optimal range of inclination angle for
the arch rib should be 8–10◦ for the 300-m-class CFST arch bridge.

In the future, further research will be conducted by considering material nonlinearity,
geometric nonlinearity, and material nonlinear coupling effects. Additionally, CFST arch
bridges with different span lengths will be investigated as well.
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Abbreviations

Symbol Illustrate
L Calculated span
f Calculate rise-to-span ratio
m arch-axis coefficient
θ Arch rib inclination angle
λ Structural stability safety factor
N axial force
M bending moment
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