Skip to main content

Advertisement

Log in

Multicriteria seismic hazard assessment in Puerto Vallarta metropolitan area, Mexico

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Puerto Vallarta, a medium-size tourist city, located in the Pacific Coast of Mexico, in a similar way as many other coastal cities, combines human activity with the potential occurrence of natural hazard events. In this way, the use of new tools to evaluate the impact of such events seems imperative. Puerto Vallarta is located within a tectonic setting where the Rivera microplate subducts beneath the North American plate and is affected by seismic activity. We performed a seismic hazard assessment by implementing a GIS-based multicriteria evaluation model. The seismic microzonation map of Puerto Vallarta was performed using a criteria set of six thematic layers, i.e., peak ground acceleration values, soil, bedrock, slope gradient, curvature, and flow accumulation. We performed the integration of the criteria set by implementing the Analytical Hierarchy Process to assign a weight to each criterion according to its contribution to the seismic hazard, i.e., PGA (0.38), soil (0.25), rock (0.14), curvature (0.10), slope (0.08), and flow accumulation (0.07). The thematic maps were integrated using GIS according to the normalized weights. We classified the seismic hazard microzonation of Puerto Vallarta into five hazard levels, i.e., low (18%), low-medium (28%), medium (22%), medium–high (20%), and high (12%). The map shows heterogeneous distribution over the territory. However, the study area can be divided into three zones, i.e., the northern mountainous area, the Ameca River Valley, and the southern mountainous area. There is an overall increment of seismic hazard from south to north. However, the highest seismic hazard levels dominate the Rio Ameca Valley showing that it is more susceptible to deposits of soft sediment and thus can be affected in the occurrence of a major earthquake. The main objective of this paper was to implement a technique to quickly estimating seismic hazards levels using available data when there is no sophisticated geophysical and engineering analysis. Using the GIS-based multicriteria techniques in seismic hazard assessment allows to elucidated areas where factors influencing surface response to earthquakes interact and raise the soil amplification susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abudeif AM, Abdelmoneim AA, Farrag AF (2017) GIS-based multi-criteria earthquake hazards evaluation using analytic hierarchy process for a nuclear power plant site, west Alexandria. Egypt Environ Earth Sci 76:1–23. https://doi.org/10.1007/s12665-017-7148-x

    Article  Google Scholar 

  • Ali PJM, Faraj RH (2014) Data normalization and standardization: a technical report. Mach Learn Tech Rep 1(1):1–6. https://doi.org/10.13140/RG.2.2.28948.04489J

    Article  Google Scholar 

  • Ali ZM, Bin NI, Alizadeh E, Shahabi H (2012) Application of Spatial Multi-Criteria Evaluation (SMCE) in Classification of earthquake hazard (Case study: Amol county). Int J Eng Res Technol (IJERT), vol 1(7) ISSN: 2278-0181

  • Allan JF (1986) Geology of the Northern Colima and Zacoalco Grabens, southwest Mexico: late Cenozoic rifting in the Mexican Volcanic Belt. Geol Soc Am Bull 97:473–514. https://doi.org/10.1130/0016-7606(1986)97<473:GOTNCA>2.0.CO;2

    Article  Google Scholar 

  • Allan JF, Nelson SA, Luhr JF, Carmichael ISE, Wopat M, Wallace P (1991) Pliocene-recent rifting in SW Mexico and associated volcanism: an exotic terrain in the makin. AAPG Memoir 47:425–445

    Google Scholar 

  • Alvarez R (2002) Banderas rift zone: a plausible NW limit of the Jalisco Block. Geophys Res Lett. https://doi.org/10.1029/2002GL016089

    Article  Google Scholar 

  • Alvarez R (2007) Submarine topography and faulting in Bahía de Banderas, Mexico. Geofis Int 46:93–116

    Google Scholar 

  • Ambraseys N, Synolakis K (2010) Tsunami catalogues for the eastern Mediterranean. J Earthq Eng 14:309–330

    Article  Google Scholar 

  • Anbazhagan P, Vinod JS, Sitharam TG (2008) Probabilistic seismic hazard analysis for Bangalore. Nat Hazards 48(2):145–166. https://doi.org/10.1007/s11069-008-9253-3

    Article  Google Scholar 

  • Anbazhagan P, Thingbaijam KKS, Nath SK, Kumar JNN, Sitharam TG (2010) Multi-criteria seismic hazard evaluation for Bangalore city, India. J Asian Earth Sci 38:186–198. https://doi.org/10.1016/j.jseaes.2010.01.001

    Article  Google Scholar 

  • Armas I (2012) Multi-criteria vulnerability analysis to earthquake hazard of Bucharest. Rom Nat Hazards 63(2):1129–1156. https://doi.org/10.1007/s11069-012-0209-2

    Article  Google Scholar 

  • Arzate JA, Alvarez R, Yutsis V, Pacheco J, López-Loera H (2006) Geophysical modeling of Valle de Banderas graben and its structural relation to Bahía de Banderas, Mexico. Rev Mex Cienc Geol 23:184–198

    Google Scholar 

  • Bandy W, Mortera-Gutierrez C, Urrutia-Fucuguachi J, Hilde TWC (1995) The subducted Rivera-Cocos plate boundary: where is it, what is it, and what is its relationship to the Colima rift? Geophys Res Lett 22:3075–3078

    Article  Google Scholar 

  • Baños A (2012) Ocupación del territorio en ciudades turísticas de México. Bitácora Urbano Territorial, Bogotá, Universidad Nacional de Colombia, vol 20. http://www.redalyc.org/pdf/748/7484041005.Pdf. Accessed 15 Jan 2018

  • Baro O, Kumar A, Ismail-Zadeh A (2018) Seismic hazard assessment of the Shillong Plateau India, Geomat, Nat Hazards Risk 9(1):841–861. https://doi.org/10.1080/19475705.2018.1494043

    Article  Google Scholar 

  • Böhnel H, Negendank JRW (1988) Palaeomagnetism of the Puerto Vallarta intrusive complex and the accretion of the Guerrero terrain, Mexico. Phys Earth Planet Inter 52:330–338

    Article  Google Scholar 

  • Boroushaki S, Malczewski J (2010) Measuring consensus for collaborative decision-making: a GIS-based approach. Comput Environ Urban Syst 34:322–332. https://doi.org/10.1016/j.compenvurbsys.2010.02.006

    Article  Google Scholar 

  • Calnek EE, Moreno TA (1974) Ensayos sobre el desarrollo urbano de México. Secretaría de Educación Pública, México, pp 175–181

    Google Scholar 

  • Canet C, Prol-Ledesma RM (2007) Mineralization processes at shallow submarine hydrothermal vents: Examples from Mexico. Geol Soc Am Bull 422:359–376. https://doi.org/10.1130/2007.2422(13)

    Article  Google Scholar 

  • Canet C, Prol-Ledesma RM, Melgarejo J-C, Reyes A (2003) Methane-related carbonates formed at submarine hydrothermal springs: a new setting for microbially-derived carbonates? Mar Geol 199:245–261. https://doi.org/10.1016/S0025-3227(03)00193-2

    Article  Google Scholar 

  • Cardenas E (2018) Demographic and urban impacts of tourism policies in Puerto Vallarta Mexico. e-Rev Tour Res (eRTR) 15(2–3):2018

    Google Scholar 

  • CFE-Comisión Federal de Electricidad (2008) Manual de diseño de Obras Civiles. Diseño por Sismo, México

    Google Scholar 

  • Chen J (2014) GIS-based multi-criteria analysis for land use suitability assessment in City of Regina. Environ Syst Res 3:13–10. https://doi.org/10.1186/2193-2697-3-13

    Article  Google Scholar 

  • Courboulex F, Singh SK, Pacheco JF, Ammon CJ (1997) The 1995 Colima–Jalisco, Mexico, earthquake (Mw 8): a study of the rupture process. Geophys Res Lett 24:1019–1022

    Article  Google Scholar 

  • CRED–Centre for Research on the Epidemiology of Disasters (2015) The Human Cost of Natural Disasters-2015 a global perspective. Université Catholique de Louvain, Brussels, pp 7–19

    Google Scholar 

  • Da Silva CJ, Cardozo OD (2015) Evaluación Multicriterio y Sistemas de Información Geográfica Aplicados a la Definición de Espacios Potenciales para uso del Suelo Residencial en Resistenca (Argentina). Int Rev Geogr Inform Sci Technol 16:23–40

    Google Scholar 

  • DeMets C, Traylen S (2000) Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle. Tectonophysics 318:119–159. https://doi.org/10.1016/S0040-1951(99)00309-1

    Article  Google Scholar 

  • Dhar S, Rai AK, Nayak P (2016) Estimation of seismic hazard in Odisha by remote sensing and GIS techniques. Nat Hazards 86:1–15. https://doi.org/10.1007/s11069-016-2712-3

    Article  Google Scholar 

  • Di Giulio G, Marzorati S, Bergamaschi F, Bordoni P, Cara F, D’Alema E, Ladina C, Massa M (2011) Local variability of the ground shaking during the 2009 L’Aquila earthquake (April 6, 2009—Mw 6.3): the case study of Onna and Monticchio villages. Bull Earthq Eng 9:783–807. https://doi.org/10.1007/s10518-011-9243-9

    Article  Google Scholar 

  • Ehret D and Hannich D (2004) Seismic Microzonation based on Geotechnical Parameters—Estimation of Site Effects in Bucharest (Romania), EOS T. Am. Geophys. Un., San Francisco, 85(47), Fall Meet. Suppl., Abstract S43A-0972. https://adsabs.harvard.edu/abs/2004AGUFM.S43A0972E

  • Erden T, Karaman H (2012) Analysis of earthquake parameters to generate hazard maps by integrating AHP and GIS for Küçükçekmece region. Nat Hazards Earth Syst Sci 12:475–483. https://doi.org/10.5194/nhess-12-475-2012

    Article  Google Scholar 

  • Fakundiny RH (2003) Seismic-risk evaluation in cities of New York and surrounding regions: issues related to all interplate cities. In: Heiken G, Fakundiny R, Sutter J (eds) Earth science in the city. American Geophysical Union, Washington, DC, pp 75–119

    Google Scholar 

  • Ferrari L, Rosas-Elguera J (1999) Late Miocene to Quaternary extension at the northern boundary of the Jalisco block, western Mexico: the Tepic-Zacoalco rift revised. In: Delgado-Granados H, Aguirre-Díaz G, Stock JM (eds) Cenozoic tectonics and volcanism of Mexico: Boulder, Colorado, Geological Society of America Special Paper 334

  • Ferrari L, Pasquarè G, Venegas Salgado S, Castillo D, Romero H (1994) Regional tectonics of western Mexico and its implications for the northern boundary of the Jalisco block. Geofis Int 33:139–151

    Google Scholar 

  • Figueroa J (1970) Catalogo de sismos ocurridos en la Repdblica Mexicana, Report No. 272, Instituto de Ingenieria, U.N.A.M., México

  • Frey HM, Lange RA, Hall CM, Delgado-Granados H, Carmichael I (2007) A Pliocene ignimbrite flare-up along the Tepic-Zacoalco rift: Evidence for the initial stages of rifting between the Jalisco block (Mexico) and North America. Geol Soc America Bull 119:49–64. https://doi.org/10.1130/B25950.1

    Article  Google Scholar 

  • Frolova NI, Larionov VI, Bonnin J, Sushchev SP, Ugarov AN, Kozlov MA (2016) Seismic risk assessment and mapping at different levels. Nat Hazards 88:1–20. https://doi.org/10.1007/s11069-016-2654-9

    Article  Google Scholar 

  • Ganapathy GP (2011) First level seismic microzonation map of Chennai city—a GIS approach. Nat Hazards Earth Syst Sci 11(2):549–559. https://doi.org/10.5194/nhess-11-549-2011

    Article  Google Scholar 

  • Gencer EA (2013) The interplay between urban development, vulnerability, and risk management. Springer, Heidelberg

    Book  Google Scholar 

  • González RD, Pérez Bourzac MT, Rivera BE (2008) El turismo y sus penumbras: Puerto Vallarta, un lugar turístico en la encrucijada de la planeación. Urbano 18:24–34

    Google Scholar 

  • Gutierrez QJ, Escudero CR, Núñez-Cornu FJ (2015) Geometry of the Rivera-Cocos Subduction zone inferred from local seismicity. Bull Seism Soc Am 105:3104–3113. https://doi.org/10.1785/0120140358

    Article  Google Scholar 

  • Hwang CL, Yoon KP (1981) Multiple attribute decision making: methods and applications. Spring-Verlag, New York

    Book  Google Scholar 

  • INEGI (2015) Encuesta intercensal 2015. Instituto nacional de estadística y geografía (INEGI). Aguascalientes, México

    Google Scholar 

  • Ishita RP, Khandaker S (2010) Application of analytical hierarchical process and GIS in earthquake vulnerability assessment: case study of Ward 37 and 69 in Dhaka City. J Bangladesh Inst Plan 3:103–112

    Google Scholar 

  • Jaiswal K, Sinha R (2007) Probabilistic seismic-hazard estimation for peninsular India. Bull Seismol Soc Am 97(1B):318–330. https://doi.org/10.1785/0120050127

    Article  Google Scholar 

  • Kelleher J, Sykes L, Oliver J (1973) Possible criteria for predicting earthquake locations and their application to major plate boundaries of the Pacific and the Caribbean. J Geophys Res 78:2547–2585. https://doi.org/10.1029/JB078i014p02547

    Article  Google Scholar 

  • Luhr JF, Nelson SA, Allan JF, Carmichael ISE (1985) Active rifting in southwestern Mexico: manifestations of an incipient eastward spreading-ridge jump. Geol 13:54–57. https://doi.org/10.1130/0091-7613(1985)13<54:ARISMM>2.0.CO;2

    Article  Google Scholar 

  • Malczewski J (2006) Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int J Appl Earth Obs Geoinf 8:270–277. https://doi.org/10.1016/j.jag.2006.01.003

    Article  Google Scholar 

  • Marín GG (2009) Turismo, globalización y desarrollo local: Puerto Vallarta y los retos del porvenir. Estudios demográficos y urbanos, vol 24 no 1 México, January/April 2009

  • Merchand RMA (2012) Desarrollo inter-estatal turístico de Puerto Vallarta y Bahía de Banderas: México. Problemas del Desarrollo, vol 168(43), January–March 2012

  • Mohanty WK, Walling MY, Nath SK, Pal I (2006) First order seismic microzonation of Delhi, India using geographic information system (GIS). Nat Hazards 40:245–260. https://doi.org/10.1007/s11069-006-0011-0

    Article  Google Scholar 

  • Moradi M, Delavar MR, Moshiri B (2017) A GIS-based multi-criteria analysis model for earthquake vulnerability assessment using Choquet integral and game theory. Nat Hazards 87:1–22. https://doi.org/10.1007/s11069-017-2822-6

    Article  Google Scholar 

  • Mortera Gutiérrez CA, Bandy WL, Ponce Núñez F, Pérez Calderón DA (2016) Bahía de Banderas, Mexico: morphology, magnetic anomalies and shallow structure. Pure Appl Geophys 173:3525–3551. https://doi.org/10.1007/s00024-016-1384-y

    Article  Google Scholar 

  • Motlagh ZK, Sayadi MH (2015) Sitting MSW landfills using MCE methodology in GIS environment (case study: Birjand plain, Iran). Waste Manag 46:1–16. https://doi.org/10.1016/j.wasman.2015.08.013

    Article  Google Scholar 

  • Muhammad APJ, Hassan RHF (2014) Data normalization and standardization: a technical report. Mach Learn Techn Rep 1(1):1–6. https://doi.org/10.13140/RG.2.2.28948.04489J

    Article  Google Scholar 

  • Mukhopadhyay A, Hazra S, Mitra D, Hutton C, Chanda A, Mukherjee S (2015) Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal. Nat Hazards. https://doi.org/10.1007/s11069-015-2035-9

    Article  Google Scholar 

  • Nath SK, Thingbaijam KKS (2009) Seismic hazard assessment—a holistic microzonation approach. Nat Hazards Earth Syst Sci 9(4):1445–1459. https://doi.org/10.5194/nhess-9-1445-2009

    Article  Google Scholar 

  • Nath SK, Thingbaijam KKS, Raj A (2008) Earthquake hazard in the northeast India–a seismic microzonation approach with typical case studies from Sikkim Himalaya and Guwahati city. J Earth Sys Sci 117:809–831

    Article  Google Scholar 

  • Pal I, Nath SK, Shukla K, Pal DK, Raj A, Thingbaijam KKS, Bansal BK (2007) Earthquake hazard zonation of Sikkim Himalaya using a GIS platform. Nat Hazards 45(3):333–377. https://doi.org/10.1007/s11069-007-9173-7

    Article  Google Scholar 

  • Pasaric M, Brizuela B, Graziani L, Maramai A, Orlie M (2012) Historical tsunamis in the Adriatic Sea. Nat Hazards 61:281–316. https://doi.org/10.1007/s11069-011-9916-3

    Article  Google Scholar 

  • Rashed T, Weeks J (2003) Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. Int J Geogr Inform Sci 17(6):547–576

    Article  Google Scholar 

  • Reyes A, Brune JN, Cinna L (1979) Source mechanism and aftershock study of the Colima, Mexico earthquake of January 30, 1973. Bull Seism Soc Am 69:1810–1819

    Google Scholar 

  • Rezaie F, Panahi M (2015) GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques. Nat Hazards Earth Syst Sci 15(3):461–474. https://doi.org/10.5194/nhess-15-461-2015

    Article  Google Scholar 

  • Rosas-Elguera J, Ferrari L, Garduño-Monroy VH, Urrutia-Fucugauchi J (1996) Continental boundaries of the Jalisco block and their influence in the Pliocene-Quaternary kinematics of western Mexico. Geol 24:921–924. https://doi.org/10.1130/0091-7613(1996)024<0921:CBOTJB>2.3.CO;2

    Article  Google Scholar 

  • Rutz-López M, Cornú FJN, Plascencia CS (2013) Study of seismic cluster at Bahía de Banderas Region, Mexico. Geofis Int 52:59–72

    Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  • Santos-Preciado JM (1997) El planteamiento teórico muitiobjetivo/multicroterio y su aplicación a la resolución de problennas medioambientales y territoriales, mediante los S.I.G. Ráster. Espacio, Tiempo y Forma 6:129–151

    Google Scholar 

  • Singh SK, Yamamoto J, Havskov J, Guzmán M, Novelo D, Castro R (1980) Seismic gap of Michoacan, Mexico. Geophys Res Lett 7:69–72. https://doi.org/10.1029/GL007i001p00069

    Article  Google Scholar 

  • Singh SK, Astiz L, Havskov J (1981) Seismic gaps and recurrence periods of large earthquakes along the Mexican subduction zone: a reexamination. Bull Seism Soc Am 71:827–843

    Google Scholar 

  • Singh SK, Rodriguez M, Espíndola JM (1984) A Catalog of Shallow Earthquakes of Mexico From 1900 ro 1981. Bull Seism Soc Am 74:267–279

    Google Scholar 

  • Skilodimou HD, Bathrellos GD, Chousianitis K, Youssef AM, Pradhan B (2019) Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environ Earth Sci. https://doi.org/10.1007/s12665-018-8003-4

    Article  Google Scholar 

  • Stock JM, Lee J (1994) Do microplates in subduction zones leave a geological record? Tectonics 13:1472–1487. https://doi.org/10.1029/94TC01808

    Article  Google Scholar 

  • Taran Y, Morán-Zenteno D, Inguaggiato S, Varley N, Luna-González L (2013) Geochemistry of thermal springs and geodynamics of the convergent Mexican Pacific margin. Chem Geol 339:251–262. https://doi.org/10.1016/j.chemgeo.2012.08.025

    Article  Google Scholar 

  • Theilen-Willige B (2010) Detection of local site conditions influencing earthquake shaking and secondary effects in Southwest-Haiti using remote sensing and GIS-methods. Nat Hazards Earth Syst Sci 10:1183–1196. https://doi.org/10.5194/nhess-10-1183-2010

    Article  Google Scholar 

  • Trejo-Gómez E (2015) Evaluación de zonas vulnerables por olas tsunami-génicas en Puerto Vallarta. Unpublished doctoral dissertation thesis). Universidad de Guadalajara. Puerto Vallarta, Jalisco, México

  • Van Westen CJ (2013) Chapter 51-3.10 Remote sensing and GIS for natural hazards assessment and disaster risk management Treatise on Geomorphology. Elsevier Ltd, Amsterdam. https://doi.org/10.1016/B978-0-12-374739-6.00051-8

    Book  Google Scholar 

  • Vipin KS, Anbazhagan P, Sitharam TG (2009) Estimation of peak ground acceleration and spectral acceleration for South India with local site effects: probabilistic approach. Nat Hazards Earth Syst Sci 9(3):865–878. https://doi.org/10.5194/nhess-9-865-2009

    Article  Google Scholar 

  • Walker BB, Taylor-Noonan C, Tabbernor A, McKinnon T, Bal H, Bradley D et al (2014) A multi-criteria evaluation model of earthquake vulnerability in Victoria British Columbia. Nat Hazards 74(2):1209–1222. https://doi.org/10.1007/s11069-014-1240-2

    Article  Google Scholar 

  • Yagi Y, Mikumo T, Pacheco J, Reyes G (2004) Source rupture process of the Tecomán, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data. Bull Seism Soc Am 94:1795–1807

    Article  Google Scholar 

  • Zimmermann JL, Stussi JM, Gonzalez Partida E, Arnold M (1988) K-Ar evidence for age and compositional zoning in the Puerto Vallarta-Río Santiago Batholith (Jalisco, Mexico). J S Am Earth Sci 1:267–274. https://doi.org/10.1016/0895-9811(88)90005-3

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of the research project “Evaluación de la Vulnerabilidad Sísmica en Puerto Vallarta” from the CA strengthening program from PRODEP (IDCA: 28289; CLAVE: UDG-CA-941). This research is part of the work program of the CA “CIENCIAS DE LA TIERRA – PELIGROS NATURALES” number UDG-CA-941. Karen L. Flores was supported by CONACYT-PNPC scholarship. The authors thank their colleagues for contributing to the Multicriteria approach for seismic hazard assessment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian R. Escudero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, K.L., Escudero, C.R. & Zamora-Camacho, A. Multicriteria seismic hazard assessment in Puerto Vallarta metropolitan area, Mexico. Nat Hazards 105, 253–275 (2021). https://doi.org/10.1007/s11069-020-04308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-04308-x

Keywords

Navigation